Anjeev Singh Academy

Anjeev Singh Academy

Class 12 Informatics Practices 065 Ch 4 Importing Exporting Data Between CSV Files MySQL and Pandas Sumita Arora Book Exercise Solution

Type B: Application-Based Questions


1. Predict the output of following code fragments one by one. For every next code fragment, consider that the changes by previous code fragment are in place. That is, for code fragment (b), changes made by code fragment (a) are persisting; for (c), changes by (a) and (b) are persisting and so on.

(a) import pandas as pd

columns=[ 2015 ‘ , ‘2016’ , ‘2017’ , ‘2018’ ]

index=[ ‘Messi% Ronaldo’, ‘Neymar’, ‘Hazard’]

df = pd.DataFrame(columns = columns, index=index)

print (df)

df.to_csv(“c:\one.csv”)

Ans: Output

 2015201620172018
MessiNaNNaNNaNNaN
RonaldoNaNNaNNaNNaN
NeymarNaNNaNNaNNaN
HazardNaNNaNNaNNaN

(b) df[‘2015’][‘Messi’]  = 12

df[‘2016’][‘Ronaldo’] = 11

df[‘2017’][‘Neymar’] = 8

df[‘2018’][‘Hazard’] = 16

print (df)

df.to_csv( “c:\two.csv”, sep = ‘@’ )

Ans: Output

 2015201620172018
Messi12NaNNaNNaN
RonaldoNaN11NaNNaN
NeymarNaNNaN8NaN
HazardNaNNaNNaN16

(c) new_df = pd.read_csv(‘c:\one.csv’, index_col= 0)

print(new_df)

Ans: Output

 2015201620172018
MessiNaNNaNNaNNaN
RonaldoNaNNaNNaNNaN
NeymarNaNNaNNaNNaN
HazardNaNNaNNaNNaN

(d) new_df = pd.read_csv(‘c:\one.csv’)

print(new_df)

Ans: Output

 Unnamed: 02015201620172018
0MessiNaNNaNNaNNaN
1RonaldoNaNNaNNaNNaN
2NeymarNaNNaNNaNNaN
3HazardNaNNaNNaNNaN

(e) new_df = pd. read_csv( ‘c:\two.csv’)

print(new_df)

Ans: Output

 @2015@2016@2017@2018
0Messi@12@@@
1Ronaldo@@11@@
2Neymar@@@8@
3Hazard@@@@16

(f) new_df = pd. read_csv( ‘c:\two.csv’, sep=’@’)

print(new_df)

Ans: Output

 Unnamed: 02015201620172018
0Messi12NaNNaNNaN
1RonaldoNaN11NaNNaN
2NeymarNaNNaN8NaN
3HazardNaNNaNNaN16
2. Are the following two statements same? Why/Why not?

(i) pd.read_csv(‘zoo.csv’, sep=’,’)

(ii) pd.read_csv(‘zoo.csv’)

Ans: Yes, both are same, because by default in csv file the value of sep is comma , only.

3. How are the following two codes similar or different? What output will they produce?

(i) df = pd.read_csv(“data.csv”, nrows = 5)

print(df)

(ii) df = pd.read_csv(“data.csv”)

print(df)

Ans: The first statement (i) reads only first five rows from csv file and store it in DataFrame df. While second statement (ii) reads all the rows from csv and store the same in the DataFrame df.

4. What is the difference between following two statements?

(i) df.to_sql( ‘houses’, con = conn, if_exists = ‘replace’)

(ii) df.to_sql(‘houses ‘, con = conn, if_exists = ‘replace’, index = False)

Ans: Statement (i), creates a table named houses having one extra column named index, while Statement (ii), creates table named houses which does not have index column.

5. Consider the following code when conn is the name of established connection to MySQL database.

Cars = { ‘Brand’ : [ ‘Alto’,’Zen’, ‘City’, ‘Kia’ ],

        ‘Price’ : [22000, 25000, 27000, 35000] }

df  = DataFrame(Cars, columns = [ ‘Brand’, ‘Price’])

df.to_sql(‘CARS’, conn, if_exists’ = replace’,  index = False)

What will be the output of following query if executed on MySQL.

SELECT * from CARS ;

Ans:  The table CARS haiving

BrandPrice
Alto22000
Zen25000
City27000
Kia35000
6. Consider following code when conn is the name of established connection to MySQL database.

sql = SELECT * from Sales where zone = “central”

df = pandas. read_sql(sql, conn)

df.head()

What will be stored in df ?

Ans: df contains all the rows of Sales table which belongs to zone “central”.

Sorry! You cannot copy content of this page. Please contact, in case you want this content.

Scroll to Top